8.5.2008

Location probability distribution of a drifting object

by Monte Carlo - simulation

Promartec Oy
Erkki Johansson

ProSAR

ProSAR is C4I decision support system for resource and operation management

- to provide the Maritime Rescue Coordinator, MRC with an intergrated presentation of the data from the different sources
- to carry out the heavy calculations needed in search planning and evaluation
- to provide the MRC with efficient planning tools to optimize the use of the resources
- to provide the MRC with data communication

OPTIMIZING THE USE OF THE RESOURCES

In case of the search operation, optimizing = maximizing the POS (Probability of Success) of the search tasks

Search object's location probability distribution is needed for POS calculation Location probability distribution can be maintained by the particle based Monte Carlo simulation

DRIFT CALCULATION BY MONTE CARLO - SIMULATION

-The drift is calculated in a similar manner in the manual method and in Monte Carlosimulation with vector components (sea current, wind current, leeway, tide)
-The trajectory of the drift object is calculated with 15 minutes time step

-Uncertainties of the environmental data (wind speed and direction, current speed and direction etc) are taken into account as drift error factor (normally $=30 \%$).
-The radius of the error circle is relative to the distance drifted.

-Uncertainties of the environmental data (wind speed and direction, current speed and direction etc) are defined as standard deviations
-The data is varied during the simulation producing the error vector component.

LOCATION DISTRIBUTION BY MONTE CARLO - SIMULATION

-5000 or more independent particles, are needed for the position probability distribution
-For the probability map a regular grid is created around all the particles, with desired grid density (default 50×50 cells).
-POC (Probability of Containment) in each cell is (number of particles within the cell)/(tot.number of particles)
-Probability map is presented as color coded POC- distribution

PARTICLE PROPAGATION MODEL:

Propagation model defines how the particles reacts on the changes in drifting forces. The random velocity components in the turbulent velocity field (two independent velocity components u and v)

Random walk

The random walk velocity: for each time step $\mathrm{u}(\mathrm{t})=\sigma \mathrm{Wu}{ }^{\mathrm{n}}[0,1]$ $\mathrm{v}(\mathrm{t})=$ б Wv * $\mathrm{n}[0,1]$ б $\mathrm{Wu*}$ б $\mathrm{Wu}=$ velocity variance (u). б $\mathrm{Wv} \mathrm{v}^{*}$ б $\mathrm{Wv}=$ velocity variance (v). $\mathrm{n}[0,1]=$ normally distributed random variable with zero mean and variance=1.

Random flight

The random flight velocity: for each time step $u(t)=A^{*} u(t-d t)+$ б Fu *sqrt(1-A*A) *n[0,1]
$A=\exp (-d t / T)$.
$\mathrm{dt}=$ the time step.
$\mathrm{T}=$ the turbulent time scale.
б Fu * б $\mathrm{Fu}=$ random flight velocity variance.

Ballistic model

The ballistic velocity error:
Constant velocity error
$\mathrm{u}(\mathrm{t})=\mathrm{u}(\mathrm{t}-\mathrm{dt})=\ldots=\mathrm{u}(0)$
$=б \mathrm{Bu}{ }^{*} \mathrm{n}[0,1]$
б $B u^{*}$ б $\mathrm{Bu}=$ velocity variance.

SCENARIO

A consistent set of fact and assumptions describing what may have happened to survivors. It usually consists of a sequence of actual and assumed events starting sometime prior to the distress incident and continuing to the present time. The most likely scenario(s) is used as a basis for planning searches (IAMSAR 4.6.1)

POSSIBILITY AREA

The smallest area containing all possible survivor or search object locations. For a scenario, the possibility area is the smallest area containing all possible survivor or search object locations which are consistence with the facts and assumptions used to form the scenario (IAMSAR 4.6.1)

SCENARIO AND FULL SCALE SITUATION PICTURE

INITIAL POSSIBILITY AREA
 INITIAL POSITION PROBABILITY DISTRIBUTION

ASSUMPTIONS AND UNCERTAINTIES

vs. POSSIBILITY AREA

- Distress incident position

Affect on initial possibility area

- Distress incident time
- Characteristics of the search object -leeway characteristics
- Environmental data -winds, water currents, waves, temperatures, visibility

Affect on current possibility area

THE BIGGER THE UNCERTAINTIES ARE, THE LARGER IS THE POSSIBILITY AREA

THE MOST COST EFFECTIVE SEARCH IS DONE BY AIMING FOR THE MORE ACCURATE DATA

INITIAL POSSIBILITY AREA

The smallest area containing all possible survivors or search object locations at the time of the distress incident.

ProSAR supports the followingelementary datum types to define the initial possibility area

- Point datum
- Line datum
- Area datum
- Route datum
- Back Track datum

The initial possibility area can also be defined as a combination of the elementary datums

INITIAL POSSIBILITY AREA:

ELEMENTARY DATUM TYPES

POINT DATUM

- Position (Phi,Lambda)
- Position accuracy
- Normal circular position probability distribution

LINE DATUM

- Polyline 2...n geographical points in sequence
- Position accuracy
- Normal position probability distribution
 on line cross section

INITIAL POSSIBILITY AREA:

ELEMENTARY DATUM TYPES

ROUTE DATUM

- 2...n waypoints in sequence each point associated with the time.
- Position accuracy
- Normal position probability distribution on line cross section
- Route defined by the user or as known track history of the selected vessel or aircraft

In case distress incident time period the route datum is a part of the route.
In case of exact distress incident time the route datum is a point

BACKTRACK DATUM

Backtracked
object

Reverse drift calculation for a known object e.g. capsized boat or debris to establish the inital possibility area and position probability distribution of the search object

INITIAL POSSIBILITY AREA:

 COMBINATION OF ELEMENTARY DATUMS

Any number of different elementary datums (point,line, area, route and backtrack) can be combined to form the initial possibility area

INITIAL POSSIBILITY AREA: WEIGHTING THE INITIAL POSITION PROBABILITY DISTRIBUTION

- Automatic, time based weighting when distress incident has been defined as time period
- User defined proportional weights for the elementary datums
- User defined hazard areas with desired risk levels

INITIAL POSSIBILITY AREA:

USER DEFINED PROPORTIONAL WEIGHTS FOR THE ELEMENTARY DATUMS

INITIAL POSSIBILITY AREA:

USER DEFINED HAZARD AREAS WITH DESIRED RISK LEVEL

PROSRIR

DISTRESS INCIDENT TIME』

EXACT DISTRESS INCIDENT TIME

-The distress time is known with a high accuracy

UNCERTAIN DISTRESS INCIDENT TIME

-Distress incident time is not known accurately
-Time is estimated as a time period -The probability of the distress time is evenly distributed within the time period -The uncertainty in the distress incident time increases the possibility area in case of a mobile search object (actively or passively moving seach object)

DRIFT OBJECT TYPE:

Drift object leeway definitions according to -IAMSAR taxonomy
-US CG taxonomy
-User defined drift object definition

Drift object type uncertainty. Several drift object types for a single search object

MOBILITY OF THE SEARCH OBJECT

The mobility of the search object after the distress incident
Fixed
-The search object is not moving after the distress incident
Mobile

- Parachute drift, aircraft glide, dead reckoned movement
- Moving actively by own means (walking, swimming, driving a vehicle)
- Moving passively due to the environmental forces (maritime drift)

MOBILITY OF THE SEARCH OBJECT

PARACHUTE DRIFT, AIRCRAFT GLIDE, DEAD RECKONED MOVEMENT
These movement are taken as an offset to the initial possibility area.

For parachute drift and aircraft glide the high winds has to be defined

LOCATION PROBABILITY DISTRIBUTION IN THE ARCHIPELAGO

MULTIPLE SEARCH OBJECTS

The search operation can contain several simultaneous search objects

'PREVIOUS SEARCH - EFFECTS' ON POSITION PROBABILITY DISTRIBUTION

Scatter dots are color coded according to the current POE (particle's Probability Of Existence)

PROBABILITY MAP AND 3D-DISTRIBUTION

After the search

Proeni

The End

Prosin

